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Course outline:
1 Descriptive statistics: Basic descriptive statistics. Types of

variables, frequency distribution, graphical data processing.
Basic characteristics of location and variability, ordered data.

2 The calculations of basic characteristics of the ordered data.
Boxplot. Multidimensional data - correlation coefficient.

3 Probability theory: event, the definition of probability,
probability properties.

4 The independence of events, conditional probability. Bayes
theorem.

5 Random variable. Probability distribution. Distribution
function, density, quantile function. Characteristics of
random variables.

6 Discete distribution: alternative, binomial, geometric,
hypergeometric, Poisson.

7 Normal distribution, Central limit theorem - Moivreova -
Laplace theorem. Continuous distribution: uniform,
exponential, Student and F distributions.
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8 Multivariate random variable (vector). Dependence -
covariance and correlation coefficient.

9 Introduction to Mathematical Statistics. Point estimates,
interval estimates for parameters of normal and binomial
distribution.

10 Basic concepts of statistical hypothesis testing. Tests of
hypotheses on the parameters of normal distribution.

11 Non-parametric tests. Tests of hypotheses about the
parameters of the binomial distribution

12 Goodness of fit tests and their application.
13 Correlation and regression. . Spearman’s coefficient of serial

correlation.
14 Linear regression, method of least squares.
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Statistics

Statistics is a discipline that deals with the collection,
organization, analysis, interpretation and presentation of
data. Only events appearing at a large set of cases, not only
at individual cases, are of interest.
Data set is a set of statistical units (inhabitants, towns,
companies,...), on which we measure values of
variable(age, number of inhab., turn-over,...)
Measurements are recorded in an appropriate scale (levels
of measurement).
On one unit we can measure several characteristics - that
allows to study correlation (Is there a relationship between
height and weight in the studied population?).
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We can treat the data set two different ways:
1 Descriptive statistics - we make conclusions only for the

studied data set from the observed data (we measured all
the units in the population we want to describe)

2 Mathematical (inferential) statistics - studied data set is
treated as a sample data – set of units randomly and
independently selected from target population that is large
(cannot be explored completely for time, financial or
organizational reasons). We want to make conclusions
about the whole population only from the sample values
(second half of semester).
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Descriptive statistics

Types of scales

zero-one (male/female, smoker/nonsmoker)
nominal (marital status, eye color) - disjoint categories that
cannot be ordered
ordinal (education level, satisfaction level) - nominal scale
with ordered categories
interval (temperature in Celsia degree, year of birth) -
values are numeric, distance between the neighboring
values is constant, an arbitrarily-defined zero point
ratio (weight, hight, number of inhabitants) - values are
given in a multiple of a unit quantity, zero means
nonexistence of the measured characteristic.

- Qualitative: zero-one, nominal, ordinal
- Quantitative (continuous): interval, ratio
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Descriptive statistics

Example - one-dimensional

- one-dimesional data

we study IQ scores of 62 pupils from 8-th grade in a certain
primary school
how to describe and evaluate what have the data in common
or how much they differ from each other?
from the data set (values of the variable) we calculate
characteristics (characteristics of location, variability, shape
of the distribution, for multi-dimensional dat also
characteristics of correlation)
a characteristic (a statistic) expresses (evaluate) given
property by one number
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Descriptive statistics

Example - data set
measured values denote by x1, x2 . . . , xn, now n = 62.

107 141 105 111 112 96 103 140 136 92
92 72 123 140 112 127 120 106 117 92

107 108 117 141 109 109 106 113 112 119
138 109 80 111 86 111 120 96 103 112
104 103 125 101 132 113 108 106 97 121
134 84 108 84 129 116 107 112 128 133
96 94

ordered data set denote by x(1) ≤ x(2) ≤ ... ≤ x(n)

72 80 84 84 86 92 92 92 94 96
96 96 97 101 103 103 103 104 105 106

106 106 107 107 107 108 108 108 109 109
109 111 111 111 112 112 112 112 112 113
113 116 117 117 119 120 120 121 123 125
127 128 129 132 133 134 136 138 140 140
141 141, 8/138



Descriptive statistics

Frequency distribution
If the values are often repeated we can produce so called
frequency table.
If the variable is continuous and n (number of observations)
is large, it is advisable to divide the range of values into M
intervals with endpoints
a = a0 < a1 < a2 < ... < aM−1 < aM = b.
all the observations from a interval can be represented by
one value (usually the center of the interval) x∗i , i = 1, . . . , k .
let ni denotes number of observations that falls to interval
〈ai−1, ai), i = 1, . . . ,M – so called absolute frequency
(Intervals are called classes).
cumulative frequency Ni gives the number of observations
in the (i-th) and all the preceding classes
numbers ni/n gives relative frequency.

, 9/138



Descriptive statistics

Example - frequency distribution

Interval x∗i absol. ni ni/n cumul. Ni Ni/n
< 80 75 1 0.016 1 0.016
〈80,90) 85 4 0.065 5 0.081
〈90,100) 95 8 0.129 13 0.210
〈100,110) 105 18 0.290 31 0.500
〈110,120) 115 14 0.226 45 0.726
〈120,130) 125 8 0.129 53 0.855
〈130,140) 135 5 0.081 58 0.935
≥ 140 145 4 0.065 62 1.000
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Descriptive statistics

Histogram

graphic display of frequency distribution
we assign to each interval a box, such that its area is
proportional to the frequency of the interval
most often the intervals have equal length (often
appropriately rounded), then the hight of the boxes
corresponds with the frequencies.
problem: choice of the number of intervals M
we can use e.g. Sturges rule:

M ≈ 1 + 3.3 log10(n)
.

= 1 + log2(n)

for our example: 1 + log2(62) = 6.95
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Descriptive statistics

Example - histogram

Histogram IQ

IQ
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Descriptive statistics Characteristics of location

Characteristic of location

allows to characterize the level of a variable by one number -
evaluation, how the observations are small or large.
it should hold for a characteristic m of a data set x , that it
naturally changes with the change of the scale, i.e. for
arbitrary constants a, b:

m(a · x + b) = a ·m(x) + b

if we add a constant b to all observations, then the
characteristic gets larger by b
if we multiple each observation by a, then the resulting
characteristic gets bigger a-times
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Descriptive statistics Characteristics of location

Aritmetic mean

x =
1
n

n∑
i=1

xi =
1
n

(x1 + x2 + . . . + xn)

for our example: x = 1
62(107 + 141 + . . . + 94) = 111.0645

sensitive to outliers. Only for quantitative scales.
can be computed from the frequency table as a weighted
average

x =
1
n

M∑
i=1

nix∗i =

∑M
i=1 nix∗i∑M

i=1 ni
=

1 · 75 + 4 · 85 + . . .+ 4 · 145
62

= 111.7742

for zero-one variable: number of ones
number of zeros andones = relative frequency

(percent) of ones (observations with the given property).
for our example yi = 0 (i-th pupil is a man) ,
yi = 1 (i-th pupil is a female): y = 32

62 = 0.516
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Descriptive statistics Characteristics of location

Mode
x̂ - most frequent value
can be used even for nominal and ordinal scales
not necessarily unique
for our example:

72 80 84 84 86 92 92 92 94 96
96 96 97 101 103 103 103 104 105 106

106 106 107 107 107 108 108 108 109 109
109 111 111 111 112 112 112 112 112 113
113 116 117 117 119 120 120 121 123 125
127 128 129 132 133 134 136 138 140 140
141 141

x̂ = 112
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Descriptive statistics Characteristics of location

Median
x̃ - number that divides the ordered sample into two equal
halves, is located in the middle of the ordered sample

x̃ = x( n+1
2 ) for n odd

x̃ =
1
2

(
x( n

2 )
+ x( n

2+1)

)
for n even

robust - not influenced by large changes of a few values.
often also for ordinal scale. For our example:

72 80 84 84 86 92 92 92 94 96
96 96 97 101 103 103 103 104 105 106

106 106 107 107 107 108 108 108 109 109
109 111 111 111 112 112 112 112 112 113
113 116 117 117 119 120 120 121 123 125
127 128 129 132 133 134 136 138 140 140
141 141

x̃ =
1
2
(
x(31) + x(32)

)
= 110
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Descriptive statistics Characteristics of location

Quantiles: percentiles, deciles, quartiles

α-quantile xα ( α ∈ (0,1)) - Dividing ordered data into two part,
such that α-ratio of the smallest values is smaller than xα

xα = x(dαne),
where dae denotes a, if it is a integer, otherwise the nearest
larger integer.
special quantiles:

percentiles: α = 0.01,0.02, . . . ,0.99
deciles: α = 0.1,0.2, . . . ,0.9

quartiles: α = 0.25,0.5,0.75

1-st (lower) quartile is denoted by Q1 = x0.25
3-rd (upper) quartile is denoted by Q3 = x0.75

median is the 50% quantile, 50-th percentile, 5-th decile a
2-nd quartile
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Descriptive statistics Characteristics of location

Example - quantiles

72 80 84 84 86 92 92 92 94 96
96 96 97 101 103 103 103 104 105 106

106 106 107 107 107 108 108 108 109 109
109 111 111 111 112 112 112 112 112 113
113 116 117 117 119 120 120 121 123 125
127 128 129 132 133 134 136 138 140 140
141 141

1-st quartile Q1 = x0.25 = x(d0.25·62e) = x(d15.5e) = x(16) = 103
3-rd quartile Q3 = x0.75 = x(d0.75·62e) = x(d46.5e) = x(47) = 120
1-st decile (10% quantile)

x0.1 = x(d0.1·62e) = x(d6.2e) = x(7) = 92
9-th decile (90% quantile)

x0.9 = x(d0.9·62e) = x(d55.8e) = x(56) = 134
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Descriptive statistics Characteristics of location

Boxplot

depicts quartiles, median,
minimum, maximum,
eventually outliers
(observations further from
the nearest quartile than
1.5 · (Q3 −Q1))

for our example:
Q1 = 103,x̃ = 110,
Q3 = 120, 72 is an outlier
70

80
90

10
0

12
0

14
0

boxplot hodnot IQ
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Descriptive statistics Characteristics of variability

Characteristics of variability

measures of scatter, inequality, variability of sample set.
it should hold for a characteristic of variability s of a data set
x that for arbitrary constant b and for arbitrary positive
constant a > 0:

s(a · x + b) = a · s(x)

if we add a constant b to all observations, then the
characteristic does not change
if we multiple each observation by a, then the resulting
characteristic gets bigger a-times
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Descriptive statistics Characteristics of variability

Variance
(population) variance s2

x = var(x) - mean square deviation from
the mean

s2
x =

1
n

n∑
i=1

(xi − x)2 =
1
n

(
n∑

i=1

x2
i − nx2

)
=

1
n

(
n∑

i=1

x2
i

)
− x2

for our example:

s2
x =

1
62

[
(107− 111.0645)2 + . . .+ (94− 111.0645)2

]
= 246.4797

from our frequency table:
s2

x = 1
n
∑M

i=1 ni(x∗i − x)2 = 1
n

(∑M
i=1 nix∗2i

)
− x2

= (1 · 752 + . . .+ 4 · 1452)− 111.77422 = 257.3361
it holds for variance that s2

a·x+b = a2s2
x
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Descriptive statistics Characteristics of variability

Standard deviation, variation coefficient
(non-sample) standard deviation: square root of variance

sx =
√

s2
x

expressed in the same units as the data

coefficient of variation:

v =
sx

x

defined only for positive values x1, . . . , xn > 0
does not depend on the choice of the scale, can be used for
comparison of different samples

for our data: sx =
√

246.4797 = 15.70
v = 15.70

111.0645 = 0.1414
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Descriptive statistics Characteristics of variability

range: difference of maximum and minimum of the sample

R = x(n) − x(1)

interquartile range: difference of the third and first quartile

RM = Q3 −Q1 = x0.75 − x0.25

mean deviation: mean absolute deviations from median (or

mean)

d =
1
n

n∑
i=1

|xi − x̃ |

for our example: R = 141− 72 = 69 RM = 120− 103 = 17

d = 1
62(|107− 110|+ . . .+ |94− 110|) = 12.03
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Descriptive statistics Characteristics of shape

Characteristics of shape

measures shape of the distribution of a data set.
it should hold for a characteristic of shape γ of a data set x
that for arbitrary constant b and for arbitrary positive
constant a > 0:

γ(a · x + b) = γ(x)

if we add a constant b to all observations or if we multiple
each observation by a, then the characteristic does not
change
so for calculation we use the standardized values

xi − x
sx

.
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Descriptive statistics Characteristics of shape

Skewness: mean third power of standardized values

g1 =
1
n

n∑
i=1

(
xi − x

sx

)3

measures how much the data ”leans”to one side of the
mean. (symetric ≈ 0, right tail > 0, left tail < 0)

Kurtosis: mean fourth power of standardized values

g2 =
1
n

n∑
i=1

(
xi − x

sx

)4

− 3

measure of the ”peakedness”of the distribution
(concentrated around peak and tails > 0, “flat” distribution
< 0)

can be used for comparison with (verification of) normal
distribution, for which g1

.
= g2

.
= 0.

for our data: g1 = 0.0159 g2 = −0.241
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Descriptive statistics Correlation characteristics

Example - multidimensional

- multidimensional data (more then one variable of interest)

we find IQ score, gender, average grade in 7th class and 8th
class for 62 pupils
how to evaluate the relationship (dependence) between
individual variables?
calculate appropriate statistics (numbers) or by a plot
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Descriptive statistics Correlation characteristics

Example - obtained multidimensional data
Girl 1 0 0 1 0 1 0 0 1 1
Gr7 1 1 3.15 1.62 2.69 1.92 2.38 1 1.4 1.46
Gr8 1 1 3 1.73 2.09 2.09 2.55 1 1.9 1.45

IQ 107 141 105 111 112 96 103 140 136 92

Girl 1 0 0 0 1 0 1 1 1 0
Gr7 1.85 3.15 1.15 1 1.69 1.6 1.62 1.38 1.7 3.23
Gr8 1.45 3.18 1.18 1 1.91 1.72 1.63 1.36 1.9 3.36

IQ 92 72 123 140 112 127 120 106 117 92

Girl 0 0 1 1 1 1 0 1 0 1
Gr7 2.07 1.84 1.2 1.31 1.4 1.53 1.84 1 1.3 1.4
Gr8 2.45 1.9 1.36 1.45 1.73 1.6 1.54 1 1.45 1.82

IQ 107 108 117 141 109 109 106 113 112 119

Girl 0 0 1 1 0 1 0 1 0 0
Gr7 1 2.92 2.23 1.69 2.61 1.07 1.46 2.15 1.69 1.38
Gr8 1 2.82 2.45 1.54 2.54 1 1.36 1.9 1.82 1.18

IQ 138 109 80 111 86 111 120 96 103 112
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Descriptive statistics Correlation characteristics

vı́cerozměrná data - pokračovánı́

Girl 1 1 1 0 0 1 0 1 1 0
Gr7 1.46 1.6 1.07 1.3 2.08 2 1.69 1.4 2.23 1.6
Gr8 1.54 1.63 1 1.27 1.54 2.09 1.91 1.45 2 1.81

IQ 104 103 125 101 132 113 108 106 97 121

Girl 1 0 1 1 0 1 0 1 1 0
Gr7 1.07 3.13 1.84 1.8 1 1.92 2.2 1.53 1.3 1
Gr8 1.27 3.27 1.82 1.63 1 1.9 2.25 1.54 1.45 1.18

IQ 134 84 108 84 129 116 107 112 128 133

Girl 0 0
Gr7 2.85 2.61
Gr8 2.91 2.81

IQ 96 94
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Descriptive statistics Correlation characteristics

Graphic display of correlation

Depends on type of
the scale
for dependence of
quantitative on
qualitative variable
we can plot
boxplot/histogram
for every category
of qualit. variable
display dependence
of IQ score on
gender
xboy = 112.0
xgirl = 110.2

hoch dívka

70
80

90
10
0
11
0
12
0
13
0
14
0

boxplot IQ zvlášť pro obě pohlaví
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Descriptive statistics Correlation characteristics

Graphic display of correlation - 2
Scatter plot: dependence of two quantitative variables
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Descriptive statistics Correlation characteristics

Correlation characteristics
two variables on every unit, i.e. we have (x1, y1), . . . , (xn, yn)
covariance: measures the direction of dependence, is
influenced by change of scale

sxy =
1
n

n∑
i=1

(xi − x) (yi − y) =
1
n

(
n∑

i=1

xi yi

)
− xy ,

It holds: sxx = 1
n

∑n
i=1(xi − x)2 = s2

x , syy = s2
y

(Pearson) correlation coefficient: normalized covariance,
measures direction and magnitude of dependence

rx ,y =
sxy√
s2

xs2
y

=
sxy

sxsy
=

1
n

n∑
i=1

(
xi − x

sx

)
·
(

yi − y
sy

)

for var. IQ a gr7: rIQ,zn7 = −6.2876
15.6997·0.6106 = −0.6559
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Descriptive statistics Correlation characteristics

Correlation coefficient
measures direction and the extend of linear dependence
its value falls always into interval 〈−1,1〉
rx ,y ≈ 0 (variables x and y mutually independent)
rx ,y close to 1 (positive dependence: increasing linear
relationship of x and y )
rx ,y close to −1 (negative dependence: decreasing linear
relationship of x and y )

For our data set we can calculate the correlation for every pair of
variables girl, iq, gr7, gr8: so called correlation matrix

girl iq gr7 gr8
girl 1.0000 -0.0597 -0.3054 -0.2661

iq -0.0597 1.0000 -0.6559 -0.6236
gr7 -0.3054 -0.6559 1.0000 0.9481
gr8 -0.2661 -0.6236 0.9481 1.0000
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Probability

Probability theory

- deals with experiment, whose possible results are called
outcomes.

a set of all possible outcomes is a sample space Ω

elements of Ω are denoted by ωi and are called elementary
events
Event (denote A, B, etc.) - is a subset of Ω (a set of
outcomes of an experiment) , can be represented by a
statement about the result of the experiment

Probability of an event A (denoted P(A)): expresses measure
of expectation, that event A occurs.

for large number of repetitions of the experiment the relative
frequency of event A goes to P(A).
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Probability Classical definition

Classical probability

the set of all possible events Ω consists of finite number (n)
of elementary events ω1, . . . , ωn

if elementary events are assigned equal probabilities
m(A) denotes the number of elementary events, that form
the event (are favorable to the event) A

Then

P(A) =
m(A)

n
=

number of favorable elem. events
number of all elem. events
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Probability Classical definition

Example: throwing dice

we throw an honest die with numbers 1,2, . . . ,6
event A - die falls on six
event B - die falls on some odd number
all 6 events that can occur are equally probable
we count m(A) = 1 a m(B) = 3

Thus
P(A) =

m(A)

n
=

1
6

and
P(B) =

m(B)

n
=

3
6

=
1
2
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Probability Classical definition

Example (permutation)
What is the probability that if we randomly rearrange letters P, A,
V, E, L we get the word PAVEL?

factorial: n! = 1 · 2 · . . . · n number of ways to arrange n
different items in a row - number of permutations
number of ways to rearrange the letters is
5! = 1 · 2 · 3 · 4 · 5 = 120, each is equally probable
only one of them is favorable
thus P = 1

5! = 1
120

What is the probability for MISSISSIPPI?
we speak about multiset permutation (some elements
appear multiple times), number of rearangements is 11!

4!·4!·2! ,
out of which only one is favorable
thus P = 1

11!
4!·4!·2!

= 4!·4!·2!
11! = 24·24·2

39916800 = 0.000029
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Probability Classical definition

Example (combination)
There are 12 boys and 16 girls in the classroom. I choose
randomly three pupils. What is the probability that I choose one
boy and two girls?

binomial coefficient:
(n

k

)
= n!

k!·(n−k)! = n·(n−1)···(n−k+1)
1·2···k is

number of ways how to choose k elements out of n different
elements (the order does not matter) - combination of k
elements from a set of n elements.
number of all possible ways, i.e. triples, which can be
chosen, is

(28
3

)
= 28!

3!·25! = 28·27·26
1·2·3 = 3276 , all of which are

equally probable.
number of favorable ways, i.e. triples with just one boy:(12

1

)
·
(16

2

)
= 12 · 120 = 1440: every way how to choose 1 boy

out of 12 can be combined with every way how to choose 2
girls out of 16.

thus P =
(12

1 )·(16
2 )

(28
3 )

= 40
91

.
= 0.44
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Probability Classical definition

Example (k-permutations of n)
From the digits 1,2,3,4,5 we randomly form a three digit
number. Every digit can be used only once. What is the
probability that such a number is smaller than 200?

number of three digit numbers 5 · 4 · 3 = 60 - number of
permutations of 5 elements taken 3 at a time (the order does
matter), each is equally probable.
number of favorable cases, i.e. numbers starting with 1 is:
1 · 4 · 3 = 12
thus P = 1·4·3

5·4·3 = 1
5

What if every digit could be used multiple times?
number of all three digit numbers 5 · 5 · 5 = 53 = 125 -
number of permutations with repetition of 5 elements taken
3 at a time (the order does matter).
number of favorable cases, i.e. numbers starting with 1 is:
1 · 5 · 5 = 25
thus P = 1·5·5

5·5·5 = 1
5
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Probability Properties

Notions and rules 1
for every random event A ⊂ Ω holds: 0 ≤ P(A) ≤ 1
∅ - impossible event, never occurs: P(∅) = 0
Ω - certain event, occurs at each realization of the
experiment: P(Ω) = 1
A - complement of an event A, is the event that A does not
occur. It holds P(A) = 1− P(A)

A ⊂ B - event A is a subset of event B, i.e. whenever A
occurs, then B occurs as well: P(A) ≤ P(B) and
P(B − A) = P(B)− P(A).
A ∪ B - union of events A and B, i.e. event that occurs if
and only if at least one of A and B occurs.
A ∩ B - intersection of events A and B, i.e. event that
occurs if and only if both A and B occur at the same time. It
holds: P(A ∪ B) = P(A) + P(B)− P(A ∩ B)
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Probability Properties

Notions and rules 2
Events A and B are called disjoint, if A ∩ B = ∅, i.e. events
A and B cannot occur both at the same time.
A1, . . .An ⊂ Ω; Ai ∩ Aj = ∅ for every i 6= j , then

P
( n
∪

i=1
Ai

)
=
∑n

i=1 P(Ai)

For any random events A1,A2, · · · ,An it holds
(inclusion–exclusion principle)
P
( n
∪

i=1
Ai

)
=
∑n

i=1 P(Ai)−
∑n−1

i=1

∑n
j=i+1 P(Ai ∩ Aj)+

+
∑n−2

i=1

∑n−1
j=i+1

∑n
k=j+1 P(Ai ∩ Aj ∩ Ak )

- · · · (−1)n−1P
( n
∩

i=1
Ai

)
.

We say that A1, . . . ,An form a partition of sample space Ω,
if the events A1, . . . ,An are disjoint (i.e.
Ai ∩ Aj = ∅, i , j = 1, . . . ,n, i 6= j) and

n
∪

i=1
Ai = Ω.
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Probability Properties

Example 1
(prob. of complementary event): From digits 1,2,3,4,5 we
randomly form a three digit number. What is the prob., that any
digit is repeated? (event A)?

P(A) = P(“any digit is repeated”) not easy to find

we can calculate

P(A) = P(“no digit is repeated”) =
number of favorable

number of all
=

5 · 4 · 3
53

thus
P(A) = 1− P(A) = 1− 12

25
=

13
25
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Probability Properties

Example 2
(union of two not disjoint events): We choose randomly one
number from 1 to 100. What is the prob., that it is divisible by two
(event A) or by three (event B)?
thus P(A ∪ B) =?

P(A) =
m(A)

n
=

50
100

= 0.5

P(B) =
m(B)

n
=

33
100

= 0.33

events A and B are not disjoint: P(A ∩ B) = 16
100 = 0.16

thus

P(A∪B) = P(A)+P(B)−P(A∩B) = 0.5+0.33−0.16 = 0.67
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Probability Properties

Example 3
(union of more not disjoint events, inclusion–exclusion principle):
Absent-minded secretary puts the letters into the envelopes at
random. What is the probability that at least one letter is put into
its correct envelop?
Let Ai be the event that letter i is placed in the correct envelope.
Thus P(A1 ∪ A2 ∪ A3) =?

P(A1) = P(A2) = P(A3) =
2!

3!
=

1
3

P(Ai ∩ Aj ) =
1
3!

=
1
6
∀i , j i 6= j and P(A1 ∩ A2 ∩ A3) =

1
6

P(A1 ∪ A2 ∪ A3) = P(A1) + P(A2) + P(A3)−P(A1 ∩ A2)−
−P(A1 ∩ A3)− P(A2 ∩ A3)+P(A1 ∩ A2 ∩ A3) =

=
1
3

+
1
3

+
1
3
−1

6
− 1

6
− 1

6
+

1
6

=
2
3
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Probability Properties

Geometric probability

generalization of classical probability for Ω uncountable

P(A) =
n − dimensional volume(A)

n − dimensional volume(Ω)

Ex. (meeting probability): Two people (A and B) are to arrive at a
certain location at some randomly chosen time between 1:00
PM and 2:00 PM, and both A and B will wait 10 min. before
leaving. Assume independent and random arrival times. What is
the prob., that they meet each other (event A)?

Ω can be pictured as a part of a plan 60× 60 (in minutes)
from picture

P(A) =
area corresponding to meeting

60 · 60
=

3600− 2500
3600

=
11
36
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Probability Conditional probability

Conditional probability
Let A,B are events such that P(B) > 0. Conditional probability
of event A given that the event B has occurred is defined as

P(A|B) =
P(A ∩ B)

P(B)

We restrict Ω only to B. We compute it as the proportion of B
that is also part of A.

Ex.: We throw a die. What is the probability that the die falls on
three (event A), given that an odd number was obtained (event
B)?

from the definition and because A ⊂ B:

P(A|B) =
P(A ∩ B)

P(B)
=

P(A)

P(B)
=

1/6
1/2

=
1
3
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Probability Conditional probability

Independent events
Independent events: occurrence of one event does not change
the probability of the other event , or

P(A ∩ B)

P(B)
= P(A|B) = P(A)

and similarly for P(B|A).
Thus we say that, events A and B are independent, if

P(A ∩ B) = P(A) · P(B)

Ex.: Two dice are rolled. What is the probability that the first die
falls on six (event A) and at the same time the second one falls
on six (event B)? Are the events A and B independent?

from the classical probability (number of all elementary
events is 36):

1
36

= P(A ∩ B)
?
= = P(A) · P(B) =

1
6
· 1

6
so the events are independent., 46/138



Probability Conditional probability

Example

(independence): two dice are rolled.
Event A means that at least one die falls on two.
Event B means that the sum of the obtained values is eight.
Are the events A and B independent?

from the classical probability (number of all elementary
events is 36):

0.0556 =
2
36

= P(A∩B)
?
= 6= P(A)·P(B) =

11
36
· 5
36

= 0.0424

so the events are not independent.
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Probability Conditional probability

Law of total probability

Let D1, D2, . . . ,Dn form a partition of the sample space Ω, then
for any event A

P(A) =
n∑

i=1

P(A|Di) · P(Di)

Proof:
P(A) = P(A ∩ Ω) = P(A ∩

n
∪

i=1
Di) =

∑n
i=1 P(A ∩ Di) =∑n

i=1
P(A∩Di )

P(Di )
· P(Di) =

∑n
i=1 P(A|Di) · P(Di)
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Probability Conditional probability

Example

(Law of total probability): There are three bags with bonbons. In
the first bag there are 10 bonbons out of which 4 are chocolate,
in the second bag 1 out of 8 is chocolate and in the third one 2
out of 6 are chocolate. From one bag (randomly chosen) we
draw one bonbon. What is the probability that the bonbon will be
chocolate (event A)?

denote Di event that we draw from the i th bag.
P(A) = P(A|D1) ·P(D1) +P(A|D2) ·P(D2) +P(A|D3) ·P(D3) =
4

10 ·
1
3 + 1

8 ·
1
3 + 2

6 ·
1
3 = 103

360 = 0.286
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Probability Conditional probability

Bayes’ theorem

Let D1, D2, . . . ,Dn form a partition of the sample space Ω, then
for any event A such that P(A) > 0, it holds

P(Di |A) =
P(A|Di) · P(Di)∑n
j=1 P(A|Dj) · P(Dj)

Proof:

P(Di |A) =
P(A ∩ Di) · P(Di)

P(A) · P(Di)
=

=
P(A|Di) · P(Di)

P(A)
LTP
=

P(A|Di) · P(Di)∑n
j=1 P(A|Dj) · P(Dj)
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Probability Conditional probability

example
(Bayes’ theorem): Suppose that only 1% of population suffers
from a certain disease. There is a medical test to detect the
disease with the following reliability: If a person has the disease,
there is a probability of 0.8 that the test will give a positive
response; whereas, if a person does not have the disease, there
is a probability of 0.9 that the test will give a negative response.
If a person have a positive response to the test, what is the
probability that the person have the disease?

denote DIS event that the person is diseased
HEA: event that the person is healthy
POS: event that the response to the test is positive
NEG: event that the response to the test is negative

P(DIS|POS)
BT
=

P(POS|DIS) · P(DIS)

P(POS|DIS) · P(DIS) + P(POS|HEA) · P(HEA)
=

=
0.8 · 0.01

0.8 · 0.01 + 0.1 · 0.99
.

= 0.075
, 51/138



Random variable Distribution

Random variable
use of events is not always sufficient
often the result of an experiment is a number
e.g. number of sixes in ten tosses with a die, lifetime of a
light bulb

Random variable: numerical expression of the result of an
experiment (real-valued function on sample space Ω)
distribution of random variable: determines probabilities
associated with the possible values of random variable (a set
function: assigns a probability to every subset of R)

distribution is uniquely determined e.g. by (cumul.) distr. f.
(Cumulative) distribution function FX (x) of a random
variable X determines for every x probability, that the rand.
var. X is smaller than x :

FX (x) = P(X < x) x ∈ R

cumulative probability (theoretic counterpart of the cumul.
relative frequency calculated for every point of R), 52/138



Random variable Distribution

Types of distribution
properties of c.d.f. FX (x):

nondecreasing, continuous from the left
limx→−∞ FX (x) = 0, limx→∞ FX (x) = 1

Discrete distribution (FX (x) “step-function”): X is a discrete
r.v., if X can take only a sequence of different values x1, x2, . . .
with probabilities P(X = x1),P(X = x2), . . . (probability (mass)
function) satisfying

∑
i P(X = xi) = 1.

Continuous distribution (FX (x) continuous): X is a continuous
r.v., if there exists a probability density function fX (x), for which

FX (x) = P(X < x) =

∫ x

−∞
fX (t) dt

fX (x) = F ′X (x) at every continuity point of fX (x)

fX (x) ≥ 0 ∀x , P(a < X < b) =
∫ b

a fX (x) dx ,
∫∞
−∞ fX (x) dx = 1

P(X = a) = 0 for every a ∈ R (theoretic counterpart of the
boundary of a histogram when lengths of intervals goes to zero)
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Random variable Distribution

Example 1
(discrete distribution): It is known that the distribution of grades from a
certain course for a random student (X ) is the following:

xi 1 2 3 4
P(X = xi) 0,05 0,2 0,4 0,35

Find P(X < 3) and cum. distribution function of r.v. X .
FX (3) = P(X < 3) = P(X = 1) + P(X = 2) = 0,05 + 0,2 = 0,25
need to find FX (x) = P(X < x) for every x ∈ R

Graf distribuční funkce X

x

F
X
(x
)

0
0.
25

0.
65

1

0 1 2 3 4 5
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Random variable Distribution

Example 2
(continuous distribution): Tram leaves regularly in five minute intervals.
Assume that we come to the tram stop at a random time. What is the
distribution of the r.v. X denoting our waiting time? to uniform distribution

it is enough to find the cum. distribution f. FX (x) or the density f.
fX (x) for every x ∈ R
clearly for x ∈ (0,5) it holds FX (x) = P(X < x) = x

5 , so fX (x) = 1
5

Graf distribuční funkce X

x (min)

F
X
(x
)

0
1

0 1 2 3 4 5

Graf hustoty X

x (min)

f X
(x
)

0
0.

2

0 1 2 3 4 5

Graf distribuční funkce X

x (min)

F
X
(x
)

0
1

0 1 2 3 4 5
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Random variable Distribution

Determining probabilities 1
for Ex. 1 (discrete distribution): Find the probability, that the student’s
grade is

less than 4 but not less than 2:

P(2 ≤ X < 4) distr. f.
==== P(X < 4)− P(X < 2) = FX (4)− FX (2) = 0,65− 0,05 = 0,6
from prob. mass f.
========== P(X = 3) + P(X = 2) = 0,4 + 0,2 = 0,6

not less than 3:

P(X ≥ 3) from distr. f.
======= 1− P(X < 3) = 1− FX (3) = 1− 0,25 = 0,75
from prob. mass f.
========== P(X = 3) + P(X = 4) = 0,4 + 0,35 = 0,75

equal to 4:

P(X = 4)
from prob. mass f.
========== 0,35 height of the step of distr. f. at 4
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Random variable Distribution

Determining probabilities 2
for Ex. 2 (continuous distribution): Find the probability, that we will wait

less than 4 but more than 2 minutes:

P(2 < X < 4)
P(X=2)=0
======= P(X < 4)− P(X < 2) distr. f.

==== FX (4)− FX (2) =
4
5
− 2

5
=

2
5

from density
=======

∫ 4

2
fX (x) dx =

∫ 4

2

1
5

dx =
2
5

longer than 4 minutes:

P(X > 4) from distr. f.
======= 1− P(X < 4) = 1− FX (4) = 1− 4

5
=

1
5

from density
=======

∫ ∞
4

fX (x) dx =

∫ 5

4

1
5

dx +

∫ ∞
5

0 dx =
1
5

exactly 4 minutes:

P(X = 4) =
∫ 4

4

1
5

dx = 0 height of the step of distr. f. at 4 is equal 0
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Random variable Characteristics of distribution

Expectation
Expectation (expected value) of random variable X - value,
around which the possible values of X cumulate

for discrete distr.: weighted mean of possible values, weights
are the probabilities

EX =
∑

i

xi ·P(X = xi) = x1 ·P(X = x1) + x2 ·P(X = x2) + . . .

u Ex. 1 : EX = 1 · 0,05 + 2 · 0,2 + 3 · 0,4 + 4 · 0,35 = 3,05
(mean, expected grade)
for continuous distr.: integral over possible values x ,
weighting function is the density

EX =

∫ ∞
−∞

x · fX (x) dx

u Ex. 2 : EX =
∫ 0
−∞ x · 0 dx +

∫ 5
0 x · 1

5 dx +
∫∞

5 x · 0 dx = 5
2

(mean, expected waiting time)
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Random variable Characteristics of distribution

Expectation of a function Y = g(X ) of a random variabe X - value,
around which values of r.v. g(X ) cumulate

for discrete distr.: weighted sum of the function values

Eg(X ) =
∑

i

g(xi ) ·P(X = xi ) = g(x1) ·P(X = x1)+g(x2) ·P(X = x2)+ . . .

for continuous distr.: integral over possible values g(x), weighting
function is the density

Eg(X ) =

∫ ∞
−∞

g(x) · fX (x) dx

for Ex. 1 : suppose, we are not interested in expected grade, but
expected tuition fee, that is derived from the grade by a relation
g(x) = 1000 · x2 Kč
Eg(X ) = 1000 ·12 ·0,05+1000 ·22 ·0,2+1000 ·32 ·0,4+1000 ·42 ·0,35 =

10 050 Kč
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Random variable Characteristics of distribution

Variance
Variance of rand. var. X : var X = E(X − EX )2 - gives variability of the
distribution of X around its expectation, it is the expected value of the
squared deviation from the mean

for discrete distr.:

var X = E(X − EX )2 =
∑

i

(xi − EX )2 · P(X = xi ) =

= (x1 − EX )2 · P(X = x1) + (x2 − EX )2 · P(X = x2) + . . .

for Ex. 1 :
var X = 2,052 · 0,05 + 1,052 · 0,2 + 0,052 · 0,4 + 0,952 · 0,35 = 0,7475

for continuous distr.:

var X = E(X − EX )2 =

∫ ∞
−∞

(x − EX )2 · fX (x) dx

for Ex. 2 :
var X =

∫ 0
−∞(x− 5

2 )2 ·0 dx +
∫ 5

0 (x− 5
2 )2 · 1

5 dx +
∫∞

5 (x− 5
2 )2 ·0 dx .

= 2,083
√

var X is called standard deviation of rand. var X
, 60/138



Random variable Characteristics of distribution

Independent random variables

Alike for events we can speak about independence of random
variables. Independence means that knowing value of one r. v. does
not effect the probability distribution of the second r. v.

We say that rand. variables X and Y are independent if for every
x , y ∈ R

P(X < x ,Y < y) = P(X < x) · P(Y < y)

specially for discrete distr. it can be replaced by the condition that for

every i , j
P(X = xi ,Y = yj) = P(X = xi) · P(Y = yj)
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Random variable Characteristics of distribution

Properties of expectation and variance
Let a,b ∈ R and X is a random var., then

1) E(a + b · X ) = a + b · EX

2) var (a + b · X ) = b2 · var X

3) var X ≥ 0

4) var X = EX 2 − (EX )2

5) E(X + Y ) = EX + EY

6) for independent X ,Y :
var (X + Y ) = var X + var Y

proof: 1), 2), 4) and 5) follows from linearity of sum or integral:
ad 1) e.g. for continuous distribution:

E(a + b · X ) =

∫ ∞
−∞

(a + b · x) · fX (x) dx lin. int.
=====

= a ·
∫ ∞
−∞

fX (x) dx + b ·
∫ ∞
−∞

x · fX (x) dx = a + b · EX

ad 2):

var(a + b · X ) = E [a + b · X − E(a + b · X )]2
1)
= E [a + b · X − (a + b · EX )]2 =

= E [b · (X − EX )]2 = b2 · var X

ad 3): foll. from fact that var X is integral (sum) of nonneg. funct. (values)
ad 4): similar as 1) and 2) (homework). ad 5) and 6): w/o proof, 62/138



Random variable Characteristics of distribution

Quantile function
Let FX is the distribution function of random variable X . Then the
function F−1

X given by the relation

F−1
X (α) = inf {x ∈ R : FX (x) ≥ α} 0 < α < 1,

is called quantile function
Infimum of a set A, inf A: is the maximum from those elements, that are smaller or
equal to all the elements of A.

Value of the function F−1
X (α) is called α-quantile (or 100 · α% quantile)

for continuous distr. it is the inverse of FX . It holds

P(X < F−1
X (α)) = α

α-quantile is such value that the rand. var. is smaller that this value with
probability α

specially F−1
X (0,5) is called median of a distribution.

u Ex. 1 : F−1
X (0,5) = inf {x : FX (x) ≥ 0,5} from graph FX

========= 3

u Ex. 2 : F−1
X (0,5) = inf {x : FX (x) ≥ 0,5} from inv. function of FX============== 5 · 0,5 = 2,5

with probab. 50 % I will wait less then 2,5 minutes
, 63/138



Random variable Discrete distributions

Bernoulli distribution
Example: only one out of the four answers a), b), c), d) to a question is correct. What
is the probability of the correct answer for random guessing?
Let X = 1 (or 0), if we answer correctly (or incorrectly)

P(X = 1) = 1/4, P(X = 0) = 3/4

X is a r.v. with Bernoulli distribution with parameter p = 1/4

Generally:

X has Bernoulli distribution with param. p if

P(X = 1) = p, P(X = 0) = 1− p, 0 < p < 1

expectation EX = 1 · P(X = 1) + 0 · P(X = 0) = p

variance
var X = EX 2 − (EX )2 = 12 · P(X = 1) + 02 · P(X = 0)− p2 =

= p − p2 = p · (1− p)

in Ex.: EX =
1
4

var X =
1
4
· 3

4
=

3
16
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Random variable Discrete distributions

Example
(binomial distribution): In a test there are 5 questions,
with only one correct answer out of a), b), c), d). What
is the probability of getting exactly 3 correct answers
for random guessing?

set X number of the correct answers
for each the probab. of correct answer is p = 1/4
answers to the questions are independent
i.e. probability that we succeed in three (e.g. the
first three) questions and fail in the remaining
(denote by 11100), is p3 · (1− p)2

we can succeed in different three answers:
number of ways to choose three questions from
five

(5
3

)
= 10

Probability of answering exactly three question
correctly is
P(X = 3) =

(5
3

)
·p3·(1−p)2 = 10·(1/4)3·(3/4)2 = 0,088

10×



11100
11010
10110
01110
11001
10101
01101
10011
01011
00111
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Random variable Discrete distributions

Binomial distribution
We conduct n independent trials. We are interested in X number of
occurrences of a certain event in these n trials. Probability of occurrence of
that event is equal for every trial, equal to p. X can only take values 0,1, . . . ,n
with probability mass function

P(X = i) =

(
n
i

)
· pi · (1− p)n−i , i = 0,1, . . . ,n; where 0 < p < 1

we say that X has binomial distribution with parameters n and p

for short X ∼ Bi(n,p)

can be understood as a sum of n independent Bernoulli trials

expectation EX =
∑n

i=0 i ·
(n

i

)
· pi · (1− p)n−i = n · p

variance

var X = EX 2− (EX )2 =
n∑

i=0

i2 ·
(

n
i

)
·pi · (1−p)n−i− (n ·p)2 = n ·p · (1−p)

in Ex.: X ∼ Bi(5,1/4) EX = 5
4 var X = 5 · 1

4 ·
3
4 = 15

16
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Random variable Discrete distributions

Example
(geometric distribution): only one out of the four answers a), b),
c), d) to every question is correct. Consecutively we answer the
questions by random guessing until the first correct answer.
What is the probability that the first correctly answered question
will be the third one.

set X number of incorrectly answered question before the
first success
every question is correctly answer with prob. p = 1/4
answers to different questions are independent
we must fail in the first and second and succeed in the third
question

So the probability is

(1− p)2 · p = (3/4)2 · (1/4)
.

= 0,14
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Random variable Discrete distributions

Geometric distribution
We conduct independent trials until a certain event occurs. We are interested
in X number of trials before the first occurrence of that event. Probability of
occurrence of that event is equal for every trial, equal to p. X can only take
values 0,1, . . . with probability mass function

P(X = i) = (1− p)i · p, i = 0,1, . . .

where 0 < p < 1

we say that X has geometric distribution with parameter p

we write X ∼ Ge(p)

expectation EX =
∑∞

i=0 i · (1− p)i · p = 1−p
p

variance

var X = EX 2 − (EX )2 =
∞∑
i=0

i2 · (1− p)i · p −
(

1− p
p

)2

=
1− p

p2

in Ex.: X ∼ Ge(1/4) EX = 3 var X = 3
4/( 1

4 )2 = 12
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Random variable Discrete distributions

Example

(hypergeometric distribution): In a pot there are 30 sweet dumplings,
out of which 10 are with strawberry and 20 with plum inside. We draw 6
dumplings. What is the prob. that less that two of them are straberry?

set X number of strawberry dumplings among the six
we draw “without replacement”, i.e. the draws are not independent
want to find P(X < 2) = P(X = 0) + P(X = 1)

P(X = 0) or P(X = 1) follows from classical definition

P(X = 0) =

(10
0

)
·
(20

6

)(30
6

) .
= 0,065 resp. P(X = 1) =

(10
1

)
·
(20

5

)(30
6

) .
= 0,261

the result is
P(X < 2)

.
= 0,065 + 0,261 = 0,326
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Random variable Discrete distributions

Hypergeometric distribution
We have a set of N objects, out of which M have a certain property. We draw
n objects. Let X denote number of drawn objects with the property. X can
only take integer values with probabilities

P(X = i) =

(M
i

)
·
(N−M

n−i

)(N
n

) , pro max(0,M + n − N) ≤ i ≤ min(M,n)

we say that X has hypergeometric distribution with parameters N, M
and n

we write X ∼ Hg(N,M,n)

expectation EX =
∑

i i · (M
i )·(

N−M
n−i )

(N
n)

= n·M
N

variance var X = n·M·(N−M)
N2 ·

(
1− n−1

N−1

)
in Ex.:
X ∼ Hg(N = 30,M = 10,n = 6) EX = 6·10

30 = 2 var X .
= 1,103
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Random variable Discrete distributions

Poisson distribution
Let X be a random variable that can take only values i = 0,1,2, . . . with
probabilities

P(X = i) =
λi

i!
e−λ, i = 0,1,2, . . .

where λ > 0 is a given number.

we say that X has Poisson distribution with parameter λ

we write X ∼ Po(λ)

expectation and variance EX = var X = λ

Let Yn ∼ Bi(n,p), where n is large and p is small such that n · p = λ.
Then limn→∞ P(Yn = i) = P(X = i).
i.e. for n large and p small the distribution Bi(n,p) can be approximated by
distribution Po(n · p)
e.g. for Y ∼ Bi(20,0,1) and X ∼ Po(20 · 0,1) = Po(2)
is P(Y = 3)

.
= 0.19 and P(X = 3)

.
= 0.18

I Most often The Poisson distribution is used to model the number of events
occurring within a given time interval if the events are arriving independently
with an intensity λ (number of telephone calls, car accidents, customers
arriving at a counter etc.), 71/138



Random variable Discrete distributions

Example
(Poisson distribution): On average there are 30 calls to a call center
during one hour. What is the probability that more that one call arrives
during one minute?

let X be the number of incoming calls during 1 min.
X is a number of events occurring within a given time interval, so
X ∼ Po(λ)

λ is not known, but EX = λ

mean number of calls per 1 minute EX = λ can be estimated by
30
60 = 0,5
so we set λ = 0,5 and calculate

P(X > 1) = 1− [P(X = 0) + P(X = 1)] =

= 1−
[

0,50

0!
e−0,5 +

0,51

1!
e−0,5

]
.

= 1− 0,606− 0,303 .
= 0,09
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Random variable Continuous distribution

Uniform distribution
In example we dealt with uniform distr. on interval (0,5)
Let X is a random variable with continuous distr. with density

fX (x) =

{ 1
b−a for a < x < b
0 for x ≤ a or x ≥ b.

and distribution function

FX (x) =

 0 x ≤ a
x−a
b−a a < x < b
1 x ≥ b.

we say that X has uniform distribution on interval (a,b)
we X ∼ U(a,b)
expectation and variance (homework)

EX =
(a + b)

2
, var(X ) =

(b − a)2

12
Example: rounding error when rounding number to the nearest
integer, 73/138



Random variable Continuous distribution

Exponential distribution
Let X is a random variable with contin. distr. and density

fX (x) =

{
λ · e−λ·x x ≥ 0
0 otherwise,

and distribution function

FX (x) =

∫ x

−∞
f (t) dt =

{
1− e−λ·x x ≥ 0
0 x < 0.

where λ > 0 is a given number

we say that X has exponential distribution with parameter λ

we write X ∼ Exp(λ)

expectation EX =
∫∞
−∞ x · fX (x) dx =

∫∞
0 x · λ · e−λ·x dx

p. p.
=== 1

λ

variance var X = EX 2 − (EX )2 =
∫∞

0 x2 · λ · e−λ·x dx −
( 1
λ

)2 2× p. p.
===== 1

λ2

I is a continuous analog of geometric distribution. It is used to describe the
waiting time or time between events if they occur continuously and
independently at a constant average rate (time before the next telephone call,
customer arrival, time to failure etc.)
, 74/138



Random variable Continuous distribution

Example
(exponential distribution): Average lifetime of a certain component is 14 years
and can be modeled as an exponential distribution r. v. Find

a) probab. that it breaks down in the first year after the two-year warranty

b) what maximal warranty period can the seller provide, so that not more
then 20% of the sold components breaks down during the period

set X the lifetime of the component, X ∼ Exp(λ)

λ is not known, but EX = 1/λ

expected lifetime EX = 1/λ can be estimated by 14

so we set λ = 1
14 and calculate

a) P (X ∈ (2, 3)) =
∫ 3

2
fX (x) dx =

∫ 3

2

1
14
· e−

x
14 dx = e−

2
14 − e−

3
14

or = P(X < 3)− P(X < 2) = FX (3)− FX (2) = 1− e−
3

14 −
(

1− e−
2

14

)
.
= 0,06

b) want to find the period p such that P(X < p) = 0,2
so p = F−1

X (0,2) (20% quantile of the distribution Exp(λ))
F−1

X (u) is the inverse function to FX (x): F−1
X (u) = − 1

λ
· ln(1− u)

the warranty period p = −14 · ln(0,8) .= 3,12 .
= 3 years and 1,5 month

, 75/138



Random variable Continuous distribution

Normal (Gaussian) distribution
Let X is continuous random variable with prob. density function

fX (x) =
1√
2πσ

exp
(
−1

2
(x − µ)2

σ2

)
, pro x ∈ R.

where µ = EX and σ2 = var X are parameters of the distribution.

then X has normal distribution with expectation µ and
variance σ2

shortly X ∼ N(µ, σ2)

distribution function FX (x) =
∫ x
−∞ f (t) dt cannot be integrated

in closed form
for N(0,1) there are tables FX (x)

most important contin. distribution

I Origin: sum of many small independent pieces
, 76/138



Random variable Continuous distribution

Plots of densities of normal distributrion N(µ, σ2)
I symmetric around expectation
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Random variable Continuous distribution

Standard normal distribution Z ∼ N(0,1)
I distrib. function N(0,1) is den. Φ(z) = P(Z < z)

I e.g. Φ(1,38) = P(Z < 1,38)
from tables
======= 0,916

0.
0

0.
1

0.
2

0.
3

0.
4

-3 -2 -1 0 1 z 2 3

F(z) = P(Z < z)

hustota N(0,1)
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Random variable Continuous distribution

Standard normal distribution Z ∼ N(0,1)
I from symmetry of N(0,1): Φ(−z) = 1− Φ(z)

I e.g. P(Z < −1,38) = Φ(−1,38) = 1− Φ(1,38)
from tab.
====== 1− 0,916 = 0,084

0.
0

0.
1

0.
2

0.
3

0.
4

-3 -2 -z 0 1 z 2 3

F(- z) = P(Z < - z)

1 - P(Z < z)
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Random variable Continuous distribution

Standard normal distribution Z ∼ N(0,1)
I P(a < Z < b) = P(Z < b)− P(Z < a) = Φ(b)− Φ(a)

I e.g. P(−1 < Z < 2) = Φ(2)− Φ(−1)
from tab.
====== 0,977− 0,158 = 0,819

0.
0

0.
1

0.
2

0.
3

0.
4

-3 -2 a 0 1 b 3

P( a < Z < b)
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Random variable Continuous distribution

General normal distribution Z ∼ N(µ, σ2)

for X ∼ N(µ, σ2) it holds that

Z den.
===

X − µ
σ
∼ N(0,1)

P(X < x) = P(X−µ
σ

< x−µ
σ

) = Φ
( x−µ

σ

)
so

P(a < X < b) = Φ

(
b − µ
σ

)
− Φ

(
a− µ
σ

)
Ex.: Hight of boys in the sixth grade X ∼ N(µ = 143, σ2 = 49):
find P(130 < X < 150) = Φ

(
150−143

7

)
− Φ

(
130−143

7

) .
= 0,81

so approximately 81% of boys in the sixth grade are 130 to 150
cm tall.

, 81/138



Random variable Continuous distribution

Ex.: What hight is exceeded by only 5% of boys in the sixth
grade?
. . . 95% quantile of distribution N(µ = 143, σ2 = 49)

, 82/138



Random variable Continuous distribution

Quantiles of standard normal distribution 1
I quantile funct. of Z ∼ N(0,1) is denoted by Φ−1(α)
I it holds: P(Z < Φ−1(α)) = Φ(Φ−1(α)) = α
I can be found in tables of Φ(x) opposite way
I frequently used: Φ−1(0,95) = 1,65 a Φ−1(0,975) = 1,96

0.
0

0.
1

0.
2

0.
3

0.
4

-3 -2 -1 0 F-1(0.95) = 1.65 3

0.95
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Random variable Continuous distribution

Quantiles of standard normal distribution 2
I in tables often quantiles only for α ≥ 0,5
I for α < 0,5 we can use (follows from symmetry of distribution):

Φ−1(α) = −Φ−1(1− α)

I e.g.: 5% quantile N(0,1) is Φ−1(0,05) = −Φ−1(0,95) = −1,65

0.
0

0.
1

0.
2

0.
3

0.
4

-3 F-1(0.05) = - 1.65 0 F-1(0.95) = 1.65 3

0.05
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Random variable Continuous distribution

Quantiles of general normal distribution

for X ∼ N(µ, σ2) it holds that Z den.
=== X−µ

σ
∼ N(0,1)

α-quantile of r. v. X is such value h, for which

P(X < h) = α Φ

(
h − µ
σ

)
= α

P
(

X − µ
σ

<
h − µ
σ

)
= α

h − µ
σ

= Φ−1(α)

P
(

Z <
h − µ
σ

)
= α h = σ · Φ−1(α) + µ

Ex.: Find 95% quantile of distribution N(µ = 143, σ2 = 49)
is equal to σ · Φ−1(0,95) + µ = 7 · 1,65 + 143 = 154,5
so only 5% of boys in the sixth grade is taller than 154,5 cm.

, 85/138



Random variable Central limit theorem

Random sample
Random sample is a set X1,X2, . . . ,Xn of independent and
identically distributed random variables.
I Ex. 1: Hight of boys in the sixth grade, large population, we
choose n boys at random and measure their height Xi
I Ex. 2: Measuring strength of a fabric, we measure the
strength at n randomly chosen samples

number of variables n is called sample size
parameters of distribution (expectation µ, variance σ2, etc.)
of ran. var. Xi is often not known
these parameters can be inferred from the ran. sample
sample mean X = 1

n

∑n
i=1 Xi is a (point) estimate of

expectation (of height, strength)
sample variance S2 = 1

n−1

∑n
i=1(Xi − X )2 is a (point)

estimate of variance of the distribution
X and S2 random variables as well

, 86/138



Random variable Central limit theorem

Properties of sample mean
Let X1,X2, . . . ,Xn is random sample from distribution with
expectation µ and variance σ2. Then
1) EX = µ (X is unbiased estimate of µ)
2) var (X ) = σ2

n
Proof: ad 1) From properties of expectation (points 1) and 5)) follows:

EX = E

(
1
n

n∑
i=1

Xi

)
=

1
n

n∑
i=1

EXi =
1
n

n∑
i=1

µ = µ

ad 2) From Properties of variance (points 2) and 6)) follows:

var (X ) = var

(
1
n

n∑
i=1

Xi

)
=

1
n2

n∑
i=1

var Xi =
1
n2

n∑
i=1

σ2 =
σ2

n

Comment:
from the proof follows, that E(

∑n
i=1 Xi) = n · µ and

var (
∑n

i=1 Xi) = n · σ2

unbiasedness of sample variance follows similarly, i.e. ES2 = σ2
, 87/138



Random variable Central limit theorem

Histograms of averages
Ex.: lifetime of the fluor tube is of interest, we choose randomly n tubes, test
them and calculate their average lifetime. We determine 1 000 such averages
and draw their histogram. (Data generated from Exp(λ = 1))
I with increasing n the variability of averages decreases and normality
improves (see CLT)
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0 1 2 3 4 5 6 7

0
10
0

20
0

30
0

n = 2

0 1 2 3 4 5 6 7

0
10
0

20
0

30
0

n = 10

0 1 2 3 4 5 6 7

0
50

15
0

25
0

n = 50

0 1 2 3 4 5 6 7

0
50

15
0

25
0

n = 1

0 1 2 3 4 5 6 7

0
10
0

20
0

30
0

n = 2

0 1 2 3 4

0
10
0

20
0

30
0

n = 10

0.5 1.0 1.5 2.0

0
50

15
0

25
0

n = 50

0.6 0.8 1.0 1.2 1.4

0
50

15
0

25
0

, 88/138



Random variable Central limit theorem

Central limit theorem
Let X1,X2, . . . ,Xn is a random sample from distribution with
expectation µ and finite variance σ2. Then in the limit for n→∞
1) sample mean X is normally distributed N(µ, σ

2

n )

2) the sum
∑n

i=1 Xi is normally distributed N(n · µ,n · σ2)
for sufficiently large n we can write

Z =
X − µ
σ
·
√

n =

∑n
i=1 Xi − n · µ√

n · σ
·∼ N(0,1)

and so

P(X < y) = P

(
X − µ
σ
·
√

n <
y − µ
σ
·
√

n

)
.

= Φ

(
y − µ
σ
·
√

n
)

P

(
n∑

i=1

Xi < y

)
= P

(∑n
i=1 Xi − n · µ√

n · σ
<

y − n · µ√
n · σ

)
.

= Φ

(
y − n · µ√

n · σ

)
, 89/138



Random variable Central limit theorem

Ex. (CLT): 300 numbers are rounded off to one decimal place
and then summed. Approximate the probability that the resultant
sum differs from the exact sum by more than 1.

Rounding error of one number is less then 0,05; the resultant sum
will differ from the exact sum by less then 300 · 0,05 = 15.
Roundoff errors Xi (i = 1, . . . ,300) can be assumed to be
independent ran. var. from uniform distribution on interval
(−0,05; 0,05).
So EXi = −0,05+0,05

2 = 0 and var Xi = (0,05+0,05)2

12 = 1
1200

The difference Y =
∑n

i=1 Xi is thus approx. normally distr.
N(0, 300

1200 = 1
4) and the probability is

P(|Y | < 1) = P(−1 < Y < 1) = P(Y < 1)− P(Y < −1) =

= P

(
Y√
1/4

<
1√
1/4

)
− P

(
Y√
1/4

<
−1√
1/4

)
=

= Φ(2)− Φ(−2) = Φ(2)− (1− Φ(2)) = 2 · Φ(2)− 1 =

= 2 · 0,9772− 1 = 0,9544, 90/138



Random variable Central limit theorem

de Moivre-Laplace theorem

Let Y binomial random variable Bi(n,p). Then for n→∞ Y is
normally distributed

N(n · p,n · p · (1− p))

Proof:

binomial random var. Bi(n,p) can be seen as a sum of n
independent Bernoulli random var. with par. p
Thus (from CLT for sum) Y is as n→∞ normal r. v. with
expectation EY = n · p and variance var Y = n · p · (1− p)

, 91/138



Random variable Central limit theorem

Ex. (de Moivre-Laplace theorem): it is known, that 52% of
population agrees with the death penalty. What is the probability
that in a survey of n = 1 000 people the majority will be against
the death penalty?

denote Y the number of supporters in the sample
if randomly selected, then Y ∼ Bi(n = 1 000,p = 0,52)

according to dM-L theorem Y is approx. normal
N(1 000 · 0,52 = 520,1 000 · 0,52 · 0,48 = 249,6)

majority in the survey is against if the number of supporters is less
than 500, so the probability is

P(Y < 500) = P
(

Y − 520√
249,6

<
500− 520√

249,6

)
= Φ

(
500− 520√

249,6

)
=

= Φ(−1,27) = 1− Φ(1,27) = 1− 0,898 = 0,102
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Mathematical statistics

Ex.: Consider an automatic machine which bottles cola into 2-liter
(2000 ml) bottles. Consumer protection requires the average amount
to be at least 2000 ml and want to check this. So there were 100
bottles randomly selected and tested for the exact amount with mean
X = 1,982 liter. Moreover we know the standard deviation of the
machine is σ = 0,05 liter (so the variance σ2 = 0,0025 liter2) and the
amount in a bottle is approx. normally distributed r. v.
N(µ, σ2 = 0,0025). Do the data confirm the hypothesis that the
machine is incorrectly adjusted and consumers do not get their
money’s worth?

X = 1,982 is a point estimate of average amount in a bottle µ. For
each random sample of bottles we would get different estimate
(average). What now?
Cannot we find an interval (...interval estimate), about which we
could say that covers the unknown mean amount µ with large
probability?
How to verify the hypothesis (...hypothesis test), that the machine
is incorrectly adjusted?
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Mathematical statistics

Mathematical statistics

Assume that X1,X2, . . . ,Xn is a random sample from a distribution
(usually) with unknown parameters
We usually assume, that the distribution is given (often normal) and we
try to estimate its unknown parameters or verify (test) hypotheses
about the parameters (for norm. distr. expectation µ and variance σ2)

point estimate of an unknown parameter is a value calculated
from the realized random sample, e.g. X is a point estimate of µ
interval estimate of an unknown parameter (also confidence
interval) is an interval (which is calculated from the observed
sample), that covers the unknown parameter with given probability
by hypothesis testing we try to decide between two antagonistic
hypotheses about a given parameter of the distribution, e.g. the
machine is adequately calibrated (µ = 2 liter) or not (µ 6= 2 liter)

, 94/138



Mathematical statistics Confidence intervals

Confidence int. for µ when σ2 is known, for N(µ, σ2)
For normal random sample X1,X2, . . . ,Xn from N(µ, σ2) it holds

X ∼ N
(
µ,
σ2

n

)
proto

X − µ
σ
·
√

n ∼ N(0,1)

and so

P

(
−Φ−1(1− α/2) <

X − µ
σ
·
√

n < Φ−1(1− α/2)

)
= 1− α

100(1− α)% confidence interval for µ and known σ2 is(
X − Φ−1(1− α/2) · σ√

n
; X + Φ−1(1− α/2) · σ√

n

)
this interval (is random) covers the unknown mean µ with probability
1− α
I only approx. 100(1− α)% such intervals include the unknown µ
, 95/138



Mathematical statistics Confidence intervals

back to Ex. : 100 bottles of cola randomly selected, the average
amount X = 1,982 liter. The individual amounts are considered
realization of a random sample from distribution N(µ, σ2 = 0,0025).
We calculate 95% confidence interval for the mean amount of coly in a
bottle µ.

100(1− α)% conf. int. is(
X − Φ−1(1− α/2) · σ√

n ; X + Φ−1(1− α/2) · σ√
n

)
for 95% conf. int. set α = 0,05 and find
Φ−1(1− 0,05/2) = Φ−1(0,975) = 1,96
plugging X = 1,982, σ = 0,05 a n = 100:(

1,982− 1,96 · 0,05√
100

; 1,982 + 1,96 · 0,05√
100

)
.

=

.
= (1,982− 0,010; 1,982 + 0,010) =

= (1,972; 1,992)

With probability 95% this interval includes the unknown mean µ, but
does not contain 2. With high certainty we can claim, that the machine
is not adequately calibrated.
, 96/138



Mathematical statistics Confidence intervals

Ex.: 16 samples of a new alloy were tested on strength in tension with
the following results (in megapascals):

13,1 16,7 14,5 10,5 15,9 16,5 20,5 17,9
18,2 19,5 8,9 16,3 15,5 15,8 25,8 23,4

Measurements will be considered a random sample from distribution
N(µ, σ2). We want 95% confidence interval for the mean tensile
strength.

Problem: cannot use the foregoing procedure, since the standard
deviation σ is not known.

, 97/138



Mathematical statistics Confidence intervals

Confidence interval for µ and σ2 unknown for N(µ, σ2)
unknown σ replaced by estimate, by so called sample standard
deviation

S =
√

S2 =

√√√√ 1
n − 1

n∑
i=1

(Xi − X )2

100(1− α)% confidence interval for µ and σ2 uknown for sample from
normal distr. is(

X − tn−1(1− α/2) · S√
n

; X + tn−1(1− α/2) · S√
n

)
quantile Φ−1(1− α/2) is replaced by the quantile tn−1(1− α/2) (is
larger→ wider interval) is a penalty for replacing the unknown
value of σ its estimate S.
tn(α) denotes the α-quantile of so called Student’s t-distribution
with n degrees of freedom; can be found in tables
interpretation is the same as for the previous interval
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Mathematical statistics Confidence intervals

back to Ex. : From 16 measurements we want to calculate the 95%
confidence interval for the mean tensile strength.

we find X = 16,8125 , S = 4,2711 and set n = 16
for 95% conf. int. we set α = 0,05 and find
t15(1− 0,05/2) = t15(0,975)

.
= 2,13

So with probability 95% the mean tensile strength is covered by
interval:(

X − tn−1(1− α/2) · S√
n

; X + tn−1(1− α/2) · S√
n

)
.

=

.
=

(
16,8125− 2,13 · 4,2711√

16
; 16,8125 + 2,13 · 4,2711√

16

)
.

=

.
= (16,8125− 2,274; 16,8125 + 2,274)

.
=

.
= (14,54; 19,09)

for 99% conf. int. is α = 0,01 and t15(1− 0,01/2) = t15(0,995) = 2,95

so 99% conf. interval forµ is (13,66; 19,96)

How to compute a conf. interval for the variance (variability of measurements)
σ2?, 99/138



Mathematical statistics Confidence intervals

Conf. interval for σ2 for N(µ, σ2)

Assume that X1,X2, . . . ,Xn is a random sample from N(µ, σ2).
can be proven that

P
(
χ2

n−1(α/2) <
(n − 1) · S2

σ2 < χ2
n−1(1− α/2))

)
= 1− α

where χ2
n(α) denotes the α-quantile of so called χ2-distribution

with n degrees of freedom; can be found in tables
100(1− α)% conf. interval for σ2 for a smaple from normal distribution
is (

(n − 1) · S2

χ2
n−1(1− α/2)

;
(n − 1) · S2

χ2
n−1(α/2)

)

interpretation is again the same

, 100/138



Mathematical statistics Confidence intervals

back to Ex. : From 16 measurements we want to calculate the 95%
confidence interval the variance of tensile strength.

we have X = 16,8125 , S2 = 4,27112 and n = 16
for 95% conf. int. we set α = 0,05
and find χ2

15(1− 0,05/2) = χ2
15(0,975) = 27,49 and

χ2
15(0,05/2) = χ2

15(0,025) = 6,26
So with probability 95% the variance is covered by interval:(

(n − 1) · S2

χ2
n−1(1− α/2)

;
(n − 1) · S2

χ2
n−1(α/2)

)
.

=

.
=

(
15 · 4,27112

27,49
;

15 · 4,27112

6,26

)
.

=

.
= (9,95; 43,71)
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Ex.: Error rate of a machine producing certain component should not
exceed 10%. Inspection of a random sample of 400 components found
42 defective components. How to find 95% amd 99% confidence
interval for the error rate of the machine?

denote p the unknown error rate
n = 400 of components randomly chosen, each is defective with
probability p
so the total number of defective is Y ∼ Bi(n = 400,p)

in the random sample the number of defective was (absolute
frequency) y = 42 (by realization of Y the value of y was found)

I the point estimate of p is the relative freq. p̂ = y
n = 42

400 = 0,105
I how can we obtain an interval estimate of p?

from CLT (deMoivre-Laplace theorem ): for Y ∼ Bi(n,p)

Y ·∼ N(n · p,n · p · (1− p)) for sufficiently large n

so Y
n
·∼ N(p, p·(1−p)

n )
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Conf. interval for parameter p of binomial distr.
Let Y is a binomial Bi(n,p) random varible, then Y

n
·∼ N(p, p·(1−p)

n ) and
because variance of Y is unknown (due to unknown p), we replace p
in the variance term by its estimate p̂. So Y

n
·∼ N(p, p̂·(1−p̂)

n ) and

P

(
−Φ−1(1− α/2) <

Y
n − p√

p̂ · (1− p̂)
·
√

n < Φ−1(1− α/2)

)
= 1− α

Y
n is then replaced by the observed relative frequency y

n = p̂. So we
get:
100(1− α)% conf. int. for parameter p of binomial distribution:(

p̂ − Φ−1(1− α/2) ·
√

p̂ · (1− p̂)

n
; p̂ + Φ−1(1− α/2) ·

√
p̂ · (1− p̂)

n

)

interpretation is similar
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back to Ex. : From 400 randomly chosen components were 42 defective. We
want to determine the 95% and 99% conf. interval for the error rate.

point estimate of the error rate p is the ratio of defective in the sample
p̂ = y

n = 42
400 = 0,105

for 95% (or 99%) conf. int. we set α = 0,05 (or. α = 0,01)

and find Φ−1(1− 0,05/2) = Φ−1(0,975) = 1,96 and
Φ−1(1− 0,01/2) = Φ−1(0,995) = 2,58

So 95% conf. int. for the error rate p is:(
p̂ − Φ−1(1− α/2) ·

√
p̂ · (1− p̂)

n
; p̂ − Φ−1(1− α/2) ·

√
p̂ · (1− p̂)

n

)
.

=

.
=

(
0,105− 1,96 ·

√
0,105 · (1− 0,105)

400
; 0,105 + 1,96 ·

√
0,105 · (1− 0,105)

400

)
.

=

.
= (0,075; 0,135) = (7,5%; 13,5%)

or 99% conf. int. (0,065; 0,145) = (6,5%; 14,5%)
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Properties of confidence intervals

interval is wider for higher confidence level (see the last example)
interval is narrower for larger n (sample size)
I e.g. for interval for µ for N(µ, σ2) or for p for Bi(n,p) the width is
inversely proportional to the square root of n; and so for half width
(more precise) interval we need 4-times more observations
in some situations from the requirement on the width we can
estimate the necessary sample size n.
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How to verify hypotheses?

how to decide whether a hypothesis about an unknown parameter
of a distribution is true?
we have calculated a confidence interval for mean amount of cola
in a bottle µ: (1,972; 1,992)

can we (and with what certainty) claim, that the machine is
incorrectly adjusted?
requirement: we would like e.g. that the probability of “false
accusation” was small
thus: we introduce standardized methods of making such
decisions
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Hypothesis testing

X1,X2, . . . ,Xn is a random sample from a distr. with unknown
parameter(s).
We have two hypothesis about a parameter(s) of the given distribution:

so called null hypothesis H0: parameter is equal to certain value,
parameters are equal,...
so called alternative hypothesis H1: opposite of the null
hypothesis, often what we want to prove

According to the type of H0 and H1 we choose the criterion (a test), is
a function of the realized random sample (observed data).
Possible decisions:

reject H0, if data (and so the test) give evidence against it
do not reject H0, if data (and so the test) does not provide enough
“evidence” against H0
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Method and possible errors

type 1 error: H0 is true and we reject it
type 2 error: H0 is not true and we do not reject it

significance level of a test: denoted by α (we set it, often
= 0,05), is the maximal acceptable level of type 1 error

decision\reality H0 holds H0 does not hold
do not reject H0 right type 2 error

reject H0 type 1 error ≤ α right

Strategy: according to what we want to find out we formulate H0
and H1 and set α. then we choose appropriate test (criterion):
i.e. from all the tests with significance level less than α we
usually choose that with the minimal probability of type 2 error
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back to Ex. : Randomly chosen 100 bottles of cola with average
amount X = 1,982 liter. Obtained values are considered a realization
of random sample from N(µ, σ2 = 0,0025). Can we claim that the
machine is incorrectly adjusted?
We would like to test at level α = 0,05 a hypothesis

H0 : µ = 2 liter (adequately calibrated)
against an alternative

H1 : µ 6= 2 liter (inadequately calibrated)

What test to use?
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Z-test: one-sample test of mean (σ2 known)
X1,X2, . . . ,Xn is a random sample from N(µ, σ2), where σ2 is known.
From what was derived follows

P

(
|X − µ|
σ

·
√

n ≥ Φ−1(1− α/2)

)
= α

So to test the hypothesis H0 : µ = µ0 against H1 : µ 6= µ0 we can use
statistic

Z =
X − µ0

σ
·
√

n

and at level α we reject the hypothesis H0 (accept H1), if
|Z | ≥ Φ−1(1− α/2)

if |Z | < Φ−1(1− α/2), then H0 is not rejected. Conclusion: H0 can
be true
Note: this holds for sufficiently large n also for other distributions
than normal thanks to Central limit theorem

, 110/138



Mathematical statistics Hypothesis testing

back to Ex. : 100 bottles of cola randomly chosen, X = 1,982 liter.
Assume, that data come from N(µ, σ2 = 0,0025). Can we claim that
the machine is inadequately calibrated?
We would like to test at level α = 0,05 a hypothesis

H0 : µ = 2 liter (adequately calibrated)
against

H1 : µ 6= 2 liter (inadequately calibrated)
Criterion (test statistic) is

Z =
X − µ0

σ
·
√

n =
1,982− 2

0,05
·
√

100 = −3,6

So
|Z | = 3,6 ≥ Φ−1(1− α/2) = Φ−1(0,975) = 1,96

and that is why at level 0,05 we reject H0 and accept H1
Conclusion: automatic machine is inadequately calibrated
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back to Ex. : 16 samples of a new alloy were tested on strength in
tension. Assume, that data come from N(µ, σ2). Can we conclude, that
the strength has changed compared to the previous alloy with strength
14 megapascalů? Let the level of the test be α = 0,01

We would like to test on the level α = 0,01 the hypothesis
H0 : µ = 14 MPa (the strength has not changed)

against the alternative
H1 : µ 6= 14 MPa (the strength has changed)

Problem: cannot use the foregoing method, since we do not know the
standard deviation of the measurements σ.
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One-sample t-test: test for the mean (σ2 unknown)

X1,X2, . . . ,Xn is random sample from N(µ, σ2), where σ2 is unknown.
It holds that X−µ

S ·
√

n ∼ tn−1, thus similarly as for Z-test it follows:

P

(
|X − µ|

S
·
√

n ≥ tn−1(1− α/2)

)
= α

so for the test of H0 : µ = µ0 against H1 : µ 6= µ0 we can use the test
statistic

T =
X − µ0

S
·
√

n

and the test of level α reject the hypothesis H0 (H1 is accepted), if
|T | ≥ tn−1(1− α/2)

if |T | < tn−1(1− α/2), then H0 is not rejected. conclusion: H0 can
be true
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back to Ex. : We have 16 sample measurements. They come from
N(µ, σ2). Can we conclude, that the strength has changed compared
to the previous alloy with strength 14 MPa?
We set the significance level α = 0,01, and we test the hypothesis

H0 : µ = 14 MPa (the strength has not changed)
against alternative

H1 : µ 6= 14 MPa (the strength has changed)
Criterion (test statistic) is

T =
X − µ0

S
·
√

n =
16,8125− 14

4,2711
·
√

16 = 2,634

So
|T | = 2,634 < tn−1(1− α/2) = t15(0,995) = 2,947

and so on the level 0,01 we do not reject H0
Conclusion: Strength can be equal to the strength of the previous alloy

Note: T-test of significance level α = 0,05 would reject H0 (H1
would be accepted), because

|T | = 2,634 ≥ tn−1(1− α/2) = t15(0,975) = 2,131
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Paired t-test
Sometimes we have two sets of data (measurements) and try to
compare them (their means). Denote the observed variables by
(X1,Y1), . . . , (Xn,Yn) and assume that the random variables X and Y
with the same index cannot be considered independent (often because
they are measured on the same object), but rand. variables with
different indices can be considered independent (measurements are
unrelated, e.g. because they are made on different objects).

Ex.: Random sample of 8 people were keeping a certain type of diet.
Table shows their weigth (in kg) before the diet and after.

Person 1 2 3 4 5 6 7 8
Before 81 85 92 82 86 88 79 85

After 84 68 73 79 71 80 71 72

We would like to find out whether the diet influence the weigth.
What test to use?
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Paired t-test
We assume to have two-dimensional random sample (X1,Y1),
. . . , (Xn,Yn) such that X and Y form pairs, that can be assumed
independent. denote µX = EXi a µY = EYi .

Then set Z1 = X1 − Y1, . . . ,Zn = Xn − Yn and assume that variables Z
can be considered to be a random sample from N(µ, σ2), where
µ = µX − µY .
So the test of hypothesis, that both sets of measurements come from a
distributions with identical mean H0 : µX − µY = 0 is equivalent to the
hypothesis H0 : µ = 0. Test of hypotheses H0 : µ = 0 against
H1 : µ 6= 0 is a one-sample t-test problem.

So we calculate Z = 1
n
∑n

i=1 Zi a S2
Z = 1

n−1
∑n

i=1(Zi − Z )2 and if

|T | =
|Z − 0|

SZ
·
√

n ≥ tn−1(1− α/2)

then the test of level α rejects the hypothesis H0 (we accept
H1 : µX 6= µY )
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back to Ex. : 8 people keeping a diet. Does it influence the weight?
Person 1 2 3 4 5 6 7 8
X=Before 81 85 92 82 86 88 79 85
Y=After 84 68 73 79 71 80 71 72
Z=Difference -3 17 19 3 15 8 8 13

We conduct level α = 0,05 test of hypothesis
H0 : µ = µX − µY = 0 kg (diet does not influence weight)
against H1 : µ = µX − µY 6= 0 kg (diet does influence weight)

Calculate Z = 10 and SZ =
√

S2
Z =
√

55,71429 = 7,4642 Test
statistic is

T =
Z − 0

SZ
·
√

n =
10− 0
7,4642

·
√

8 = 3,789

So
|T | = 3,789 ≥ tn−1(1− α/2) = t7(0,975) = 2,365

and thus at the signif. level 0,05 we reject H0.
Conclusion: diet does influence the weight.

Note: even for α = 0,01 we would reject H0 (t7(0,995) = 3,499)
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Two-sample t-test
Sometimes we have two sets of data (measurements) and try to
compare them (their means), but the variables in the pairs are not
dependent and the two samples can be of different sample size.
Denote the observable variables as X1, . . . ,Xn and Y1 . . . ,Ym and we
assume them to be two independent random samples (all the variables
are independent).

Ex.: The following heights of students in the classroom were found out
(in cm):

Boys 130 140 136 141 139 133 149 151
Girls 135 141 143 132 146 146 151 141
Boys 139 136 138 142 127 139 147
Girls 141 131 142 141

Test that boys and girls are on average equally tall. Set α = 0,05.
What test to use?
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Two-sample t-test
Assume we have random sample X1, . . . ,Xn ∼ N(µX , σ

2) and random
sample Y1, . . . ,Ym ∼ N(µY , σ

2) and these two samples are
independent with equal variance.
We set

S∗2 =
1

n + m − 2
·
(

(n − 1) · S2
X + (m − 1) · S2

Y

)
,

where S2
X = 1

n−1
∑n

i=1(Xi − X )2 a S2
Y = 1

m−1
∑m

i=1(Yi − Y )2.

For the test of hypothesis, that both sets of measurements come from
distributions with the same mean H0 : µX − µY = 0 against alternative
H1 : µX − µY 6= 0 we can use test statistic:

T =
X − Y − 0

S∗
·
√

n ·m
n + m

and if |T | ≥ tn+m−2(1− α/2) then at level α the hypothesis H0 is
rejected (we accept H1 : µX 6= µY means are equal)
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back to Ex. : Test at level α = 0,05 hypothesis that boys and girls are
on average equally tall.

Boys 130 140 136 141 139 133 149 151
Girls 135 141 143 132 146 146 151 141
Boys 139 136 138 142 127 139 147
Girls 141 131 142 141

test H0 : µX − µY = 0 cm (equally tall)
against H1 : µX − µY 6= 0 cm (not equally tall)

We calculate X = 139,133; Y = 140,833; S2
X = 42,981;

S2
Y = 33,788;

S∗ =

√
1

n + m − 2
·
(
(n − 1) · S2

X + (m − 1) · S2
Y

)
=

√
1
25

(14 · 42,981 + 11 · 33,788) = 6,240

Test statistic is

T =
X − Y − 0

S∗
·
√

n ·m
n + m

=
139,133− 140,833− 0

6,240
·
√

15 · 12
15 + 12

= −0,703

So |T | = 0,703 < tn+m−2(1− α/2) = t25(0,975) = 2,060 and so at
level 0,05 we do not reject H0.
Conclusion: it is possible that boys and girls are equally tall on
average.

Clearly, at any lower level (also α = 0,01) we would not reject H0.
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Sign test

Sometimes we have only information how many times in a set of
independent trials a variable exceeded (+) or not exceeded (-) certain
value. We want to test a hypothesis, that both happens with the same
probability, i.e. that median (50% quantile) of the distribution is equal to
that value.

Ex.: From 46 beers, that were ordered at our table during one night,
were 27 undersized and 19 oversized. Can we claim that the barman
does not keep the correct size of a beer? (cheats either us or the bar
owner)?
We want to verify whether the median amount of beer in a glass can
be half a liter. And we know only number of beers below and above
that measure. What test to choose?
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Sign test - asymptotic (for large n)
Assume random sample X1, . . . ,Xn from continuous distribution with
median x̃ . So it holds

P(Xi < x̃) = P(Xi > x̃) =
1
2

i = 1, . . . ,n

We want to test H0 : x̃ = x0 against H1 : x̃ 6= x0, where x0 is a given
number.
We calculate the differences X1 − x0, . . . ,Xn − x0 and those equal to
zero are omitted (and n is decreased adequately).
Under H0 number of differences with a positive sign
Y ∼ Bi(n,p = 1/2) and so according to Moivreovy-Laplaceovy věty for large n:
Y is approx. normally distributed N(n/2,n/4)
Under H0 thus

U =
Y − n/2√

n/4
=

2Y − n√
n

·∼ N(0,1)

H0 : x̃ = x0 at level α is rejected if |U| ≥ Φ−1(1− α/2)
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Sign test - exact

is used if n is small

We use the fact that under H0 the number of differences with positive
sign Y ∼ Bi(n,p = 1/2) and so we expect the observed value Y to be
close to its expectation n/2.
We accept H1 : x̃ 6= x0 if Y too small (≤ k1) or too large (≥ k2).
We set level α.
Then k1 is chosen as the largest number for which it still holds that

P(Y ≤ k1) ≤ α/2
and k2 is chosen as the smallest number for which it still holds that

P(Y ≥ k2) ≤ α/2
H0 is rejected at level α, if Y ≤ k1 or Y ≥ k2.
Note: The true signif. level of the test is often smaller than α
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back to Ex. : From 46 beers 27 undersized and 19 oversized. Can we
claim that the barman does not keep the correct size (is biased one or
the other way)?
At level α = 0,05 we test H0 : x̃ = 500 ml against H1 : x̃ 6= 500 ml.

Exact test:
We have Y ∼ Bi(n = 46,p = 1/2), α/2 = 0,025 and find k1 and k2

k 14 15 16 . . . 30 31 32
P(Y = k) 0,003 0,007 0,014 . . . 0,014 0,007 0,003
P(Y ≤ k) 0,006 0,013 0,027 . . . 0,987 0,994 0,998
P(Y ≥ k) 0,998 0,994 0,987 . . . 0,027 0,013 0,006

Since k1 = 15 < Y = 19 < k2 = 31, we do not reject H0 at level 0,05
Note: true level of the test (prob. of type 1. error) is only
2 · 0,013 = 0,026.

Asymptotic test: We calculate

U =
2Y − n√

n
=

2 · 19− 46√
46

= −1,180

neither this test rejects H0, since |U| = 1,180 � Φ−1(0,975) = 1,960, 124/138
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Sign test - usage

test about median for ran. sample X1, . . . ,Xn from contin. distr.
can be used instead of one-sample (or paired) t-test
advantage: no need for normality assumption
disadvantage: for normal sample probab. of type 2. error is a bit
larger compared to t-test
For data from normal distribution t-test is the best choice
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Tests for independence
Assume we have a random sample from two-dimensional distribution
(repeated measurements of two variables) and try to find out, whether
there is a dependence (correlation) between these two variables.
Denote the observed values by (X1,Y1), . . . , (Xn,Yn).

Ex.: 9 students of statistical course were randomly selected and put
through a math and language test with the following results:

Student number 1 2 3 4 5 6 7 8 9
Language test 50 23 28 34 14 54 46 52 53
Math test 38 28 14 26 18 40 23 30 27.

We want to find out, whether students’ math and language scores are
correlated.
Note: Not the same as decision whether the math and lang. scores are
at the same level (in that case it would be a paired t-test problem)
What test to choose?
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(Pearson) correlation coefficient
Assume we have a two-dimensional random sample
(X1,Y1), . . . , (Xn,Yn), i.e. variables with different indeces are
independent. Denote S2

X and S2
Y to be sample variances of X and Y

and sample covariance between X and Y as

SXY =
1

n − 1

n∑
i=1

(
Xi − X

)
·
(

Yi − Y
)

=
1

n − 1

[
n∑

i=1

(Xi · Yi)− n · X · Y

]
(Pearson) sample correlation coefficient:

rXY = r =
SXY√
S2

x · S2
y

=

∑n
i=1(Xi · Yi)− n · X · Y√(∑n

i=1 X 2
i − n · X 2

)(∑n
i=1 Y 2

i − n · Y 2
)

Under normality assumtion we calculate

T =
r√

1− r2
·
√

n − 2

and hypothesis of independence of X and Y at level α is rejected if
|T | ≥ tn−2(1− α/2)
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At level α = 0,05 we test the hypothesis of independence between
math and language scores from example , where 9 students were
chosen and given both tests.

Language test 50 23 28 34 14 54 46 52 53
Math test 38 28 14 26 18 40 23 30 27

We get S2
X = 223,25 and S2

Y = 70,86 and
SXY = 1

8 (50 · 38 + . . .+ 53 · 27− 9 · 39,33 · 27,11) = 85,46
correlation coef. is thus r = SXY√

S2
x ·S2

y
= 85,46

14,94·8,42 = 0,679

We get

T =
r√

1− r2
·
√

n − 2 =
0,679√

1− 0,6792
·
√

7 = 2,450

and since |T | = 2,450 ≥ tn−2(0,975) = 2,365, we reject the hypothesis
of independence at level 0,05. We can claim, that there is a relationship
between math and language scores for students of that course
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Test of independence in contingency table
Sometimes the observed data form a contingency table. For example,
in case of two variables measured in nominal scale on n different
object. The aim is to determine if two variables are dependent.

Ex.: middle-school teacher was interested in determining if there was a
relationship between math anxiety and gender among students at her
school. 100 students were randomly selected and given a
psychological test which assessed a student’s level of math anxiety
(low, medium, and high). The gender of each student was also noted.
The results are presented in the contingency table below:

math anxiety
gender low medium high sum
male 10 26 20 56
female 4 10 30 44
sum 14 36 50 100

we can perform a χ2-test of independence: compare observed counts
and expected cell counts under independence of the variables
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math anx.
gender low med hig sum
male 10 26 20 56
female 4 10 30 44
sum 14 36 50 100

math anx.
gender low med hig sum
male 18% 46% 36% 100%
female 9% 23% 68% 100%
sum 14% 36% 50% 100%

Does the level of math anxiety depend on gender?
If independent, the percentages for both genders should be similar
estimate of prob., that gender is female P(gend. = F) = 44/100
estimate of prob., that anxiety is high P(anx. = v) = 50/100
so estimate of prob. (if independent), that student is female with
high anxiety
P(gend. = F ∩ anx. = H) = (44/100) · (50/100) = 0,22
so among 100 students we would expect
100 · (44/100) · (50/100) = 22 such students
similarly: expected counts for the remaining 5 cells.
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χ2 test of independence in contingency table
denote nij count in i-th row and j-th column of the table (we have I
rows and J columns)
denote ni+ (or n+j ) sum of counts in i-th row (or j-th column)
expected count in i-th row and j-th column under hypoth. of
independence is

eij =
ni+ · n+j

n
Test statistic is a goodness of fit measure between nij and oij :

χ2 =
I∑

i=1

J∑
j=1

(nij − eij)
2

eij

If χ2 ≥ χ2
(I−1)·(J−1)(1− α), we reject the hypothesis of independence of

those two variables at level α.
I for the test to be valid all the expected cell counts are required to be
larger than 5
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At level α = 0,05 we test hypothesis of independence between gender
and math anxiety from example .
Observed (or expected) cell counts are:

math anxiety
gender low medium high sum
male 10 (7,84) 26 (20,16) 20 (28) 56
female 4 (6,16) 10 (15,84) 30 (22) 44
sum 14 36 50 100

χ2 =
I∑

i=1

J∑
j=1

(nij − eij)
2

eij
=

(10− 7,84)2

7,84
+

(26− 20,16)2

20,16
+

+
(20− 28)2

28
+

(4− 6,16)2

6,16
+

(10− 15,84)2

15,84
+

(30− 22)2

22
= 10,39

We find out that χ2 = 10,39 ≥ χ2
(I−1)·(J−1)(1− α) = χ2

2(0,95) = 5,99
So we reject the hypothesis of independence at level 5%. Math anxiety
level is related to gender.
I We can say that math anxiety is influenced by gender.
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Predicting house prices

You want to sell a house of 200m2. How
to predict its market price? We can use
property sales data where we know the
size and price.

price of a house is influenced by
many factors (neighborhood, size, in
what condition it is etc.)
for simplicity we use only size to
predict price
How to predict the price? Is there an
exact way?
price of house (in mil. Kč) and size
of house (in m2) were:

Size (xi ) Price(Yi )
74 1,40
84 1,66
93 1,48

102 1,86
130 1,78
130 1,16
139 1,70
149 2,28
167 1,90
186 2,00
223 2,76
232 2,22
251 2,48
297 3,22
325 3,44
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Dependence of price on size
It is much more useful to look at the scatterplot:
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I We can see that price more or less linearly changes with size
, 134/138
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Regression line - least square method
We have set of values (xi ,Yi), i = 1, . . . ,n. We want from the set
of explanatory variable xi to estimate values of response variable
Yi (dependent variable)
assumption: each size xi corresponds to a average (mean) price
Yi that depends linearly on xi :

EYi = a + b · xi , i = 1, . . . ,n

Moreover assume that Yi are independent
Yi ∼ N(a + b · xi , σ

2), i = 1, . . . ,n
Parameters a and b of regression line are estimated by means of
least square method, i.e. we look for the values for which the
expression

∑n
i=1(Yi − (a + b · xi))2 is minimal. The solution is:

b̂ =

∑n
i=1(xi · Yi)− n · x · Y∑n

i=1 x2
i − n · x2 =

SxY

S2
x

â = Y − b̂ · x
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Residual sum of squares (unexplained variability of Y ):
Se =

∑n
i=1(Yi − (â + b̂ · xi))2 min. value of sum of squares

Residual variance: s2 = Se/(n − 2)

equation of line estimating the dependence: y = â + b̂ · x
Is the dependence significant? We test H0 : b = 0 against
H1 : b 6= 0 using the statistic

T =
b̂
s
·

√√√√ n∑
i=1

x2
i − n · x2

the hypothesis H0 (that Y does not depend on x) at level α is
rejected, if |T | ≥ tn−2(1− α/2)

Coefficient of determination: what part of the overall variability
of dependent variable (

∑n
i=1(Yi −Y )2) is explained by explanatory

variable:
R2 = 1− Se∑n

i=1

(
Yi − Y

)2 (= r2
xY )
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back to example . We want to estimate the least square line of how price
depend on size. We get b̂ = 0,0076(mil ./m2) and â = 0,777(mil .)
equation of the line: y = 0,777 + 0,0076 · x
interpretation of b̂: with every m2 the mean price of the house rises by
7 600 Kč interpretation of â (not always reasonable): price of 0 m2

house is 777 600 Kč?
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the residual sum of squares: Se = 1,036
residual variance: s2 = Se/(n − 2) = 0.0797
Is this linear dependence significant? We test H0 : b = 0 against
H1 : b 6= 0 using statistic

T =
b̂
s
·

√√√√ n∑
i=1

x2
i − n · x2 =

0,0076
0,282

·
√

529780− 15 · 29629,88 = 7,9

and since |T | = 7,9 ≥ t13(0,975) = 2,16, the hypothesis
H0 : b = 0 (that price is independent of size) at level 0,05 is
rejected.
coefficient of determination:

R2 = 1− Se∑n
i=1

(
Yi − Y

)2 = 1− 1,036
5.997

= 0,8272

So 83% of variability of the price is explained by the linear
dependence on size.
estimate of the mean price of the 200m2 house:
Ŷ = 0,777 + 0,0076 · 200 = 2,297, 138/138
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